LAB MEETING

Fall 2020

Wednesday 4:00 - 5:00 PM, Virtually or 363 Corbett Family Hall 

August 13th: No reading; discuss lab matters

August 19th: Watch VWMS 2020 Presentation and read Rademaker, R.L., van de Ven, V.G., Tong, F., & Sack, A.T. (2017). The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate. PLoS ONE 12(4): e0175230.

August 26th: Hajonides, J. E., van Ede, F., Stokes, M. G., & Nobre, A. C. (2019). Comparing the prioritisation of items and feature-dimensions in visual working memory [Preprint]. Neuroscience.

September 2nd: Zokaei, N., Ning, S., Manohar, S., Feredoes, E., & Husain, M. (2014). Flexibility of representational states in working memory. Frontiers in Human Neuroscience, 8.

September 9th: Nate & Zengbo co-lead Wan, Q., Cai, Y., Samaha, J., & Postle, B. R. (2020). Tracking stimulus representation across a 2-back visual working memory task. Royal Society Open Science, 7(8), 190228.

September 16th: Bianca leads - Lee, E. Y., Cowan, N., Vogel, E. K., Rolan, T., Valle-Inclan, F., & Hackley, S. A. (2010). Visual working memory deficits in patients with Parkinson’s disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain133(9), 2677–2689.

September 23rd: Mao leads - Dutta, A., Shah, K., Silvanto, J., & Soto, D. (2014). Neural basis of non-conscious visual working memory. NeuroImage91, 336–343.

September 30th: Jori leads - Nissim, N. R., O’Shea, A. M., Bryant, V., Porges, E. C., Cohen, R., & Woods, A. J. (2017). Frontal structural neural correlates of working memory performance in older adults. Frontiers in Aging Neuroscience, 8

October 7th: Yuki leads - Widhalm, M. & Rose, N.S. (2019). How can transcranial magnetic stimulation be used to causally manipulate memory representations in the human brain? WIREs Cognitive Science

October 14th: Isaiah leads - Wolff, M. J., Jochim, J., Akyürek, E. G., & Stokes, M. G. (2017). Dynamic hidden states underlying working-memory-guided behavior. Nature Neuroscience, 20(6), 864–871.

October 21st: Josh preps for Psychonomics

October 28th: Cheick leads - Offen, S., Schluppeck, D., & Heeger, D. J. (2009). The role of early visual cortex in visual short-term memory and visual attention. Vision Research, 49(10), 1352–1362. 

November 4th: Lauren leads - Ferreri, F., Vecchio, F., Vollero, L., Guerra, A., Petrichella, S., Ponzo, D., Määtta, S., Mervaala, E., Könönen, M., Ursini, F., Pasqualetti, P., Iannello, G., Rossini, P. M., & Di Lazzaro, V. (2016). Sensorimotor cortex excitability and connectivity in Alzheimer’s disease: A TMS-EEG co-registration study: sensorimotor cortex excitability and connectivity in AD. Human Brain Mapping37(6), 2083–2096.

November 11th: Nate leads, Dr. Koen joins - *2 ARTICLES* Craik, F. I. M., & Rose, N. S. (2012). Memory encoding and aging: A neurocognitive perspective. Neuroscience & Biobehavioral Reviews, 36(7), 1729–1739. AND Koen, J. D., & Rugg, M. D. (2019). Neural dedifferentiation in the aging brain. Trends in Cognitive Sciences, 23(7), 547–559.

Possible Future Articles:

Brincat, S. L., Donoghue, J. A., Mahnke, M. K., Kornblith, S., Lundqvist, M., & Miller, E. K. (2020). Interhemispheric transfer of working memories [Preprint]. Neuroscience

Zokaei, N., Sillence, A., Kienast, A., Drew, D., Plant, O., Slavkova, E., Manohar, S. G., & Husain, M. (2020). Different patterns of short-term memory deficit in Alzheimer’s disease, Parkinson’s disease and subjective cognitive impairment. Cortex, S0010945220303002. 

Yu, Q., Teng, C., & Postle, B. R. (2020). Different states of priority recruit different neural representations in visual working memory. PLOS Biology, 18(6), e3000769. 

van Loon, A. M., Solis, K. O., Fahrenfort, J. J., & Olivers, C. N. L. (2018). Current and future goals are represented in opposite patterns in object-selective cortex [Preprint]. Neuroscience. 

Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). Decoding dynamic brain patterns from evoked responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of Cognitive Neuroscience29(4), 677–697.

Gelastopoulos, A., Whittington, M. A., & Kopell, N. J. (2019). Parietal low beta rhythm provides a dynamical substrate for a working memory buffer. Proceedings of the National Academy of Sciences116(33), 16613–16620.

Sutterer, D. W., Foster, J. J., Adam, K. C. S., Vogel, E. K., & Awh, E. (2019). Item-specific delay activity demonstrates concurrent storage of multiple active neural representations in working memory. PLOS Biology17(4), e3000239.

Blacker, K. J., Ikkai, A., Lakshmanan, B. M., Ewen, J. B., & Courtney, S. M. (2016). The role of alpha oscillations in deriving and maintaining spatial relations in working memory. Cognitive, Affective, & Behavioral Neuroscience16(5), 888–901.

Spring 2020                         

Thursday 4:00 - 5:00 PM, 363 Corbett Family Hall 

January 16th: No reading; discuss lab matters

January 23rd: Read Dr. Rose's manuscript for Current Directions, and provide feedback

January 30th: Bagherzadeh, Y., Khorrami, A., Zarrindast, M., Shariat, R., & Pantazis, S. (2016). Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory. Experimental Brain Research, 234(7), 1807–1818. 

February 6th: Shields, J., Mock, J., Devier, D., & Foundas, A. (2018). Unilateral repetitive transcranial magnetic stimulation differentially affects younger and older adults completing a verbal working memory task. Journal of the Neurological Sciences, 384, 15–20. 

February 13th: Read manuscript for The Clinical Neuropsychologist, and provide feedback      

February 20th: Majerus, S., Cowan, N., Péters, F., Van Calster, L., Phillips, C., & Schrouff, J. (2016). Cross-Modal decoding of neural patterns associated with working memory: Evidence for attention-based accounts of working memory. Cerebral Cortex, 26(1), 166–179. 

February 27th: Ester, E., Sprague, T., & Serences, J. (2015). Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory. Neuron, 87(4), 893–905.

March 5th: Finish Ester et al. paper & read Rademaker, R. L., Chunharas, C., & Serences, J. T. (2019). Coexisting representations of sensory and mnemonic information in human visual cortex. Nature Neuroscience, 22(8), 1336–1344.

**March 12th: No meeting (Mid-term break)**

**Some lab meetings were postponed due to the COVID-19 pandemic**

April 23rd: Fulvio, J. M., & Postle, B. R. (2020). Cognitive control, not time, determines the status of items in working memory. Journal of Cognition, 3(1), 8.

**April 30th & May 7th: No meetings (Reading days & Finals)**

Fall 2018

Thursday 4:00 - 5:00 PM, 376 Corbett Family Hall

September 13th: 

LaRocque, J. J., Lewis-Peacock, J. A., & Postle, B. R. (2014). Multiple neural states of representation in short-term memory? It’s a matter of attention. Frontiers in human neuroscience, 8, 5

 

September 20th:

Lim, P. C., Ward, E. J., Vickery, T. J., & Johnson, M. R. (2018). Not-so-working memory: Drift in fMRI pattern representations during maintenance predicts errors in a visual working memory task. bioRxiv, 341990.

September 27th: 

Leavitt, M. L., Mendoza-Halliday, D., & Martinez-Trujillo, J. C. (2017). Sustained activity encoding working memories: not fully distributed. Trends in neurosciences, 40(6), 328-346.

 

October 4th: 

Ezzyat, Y., Wanda, P. A., Levy, D. F., Kadel, A., Aka, A., Pedisich, I., ... & Gross, R. E. (2018). Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nature communications, 9(1), 365.

 

October 11th: 

Wang, M., Gamo, N. J., Yang, Y., Jin, L. E., Wang, X. J., Laubach, M., ... & Arnsten, A. F. (2011). Neuronal basis of age-related working memory decline. Nature, 476(7359), 210.

 

October 18th: No Meeting (Fall Break)

October 25th: 

Murray, J. D., Bernacchia, A., Roy, N. A., Constantinidis, C., Romo, R., & Wang, X. J. (2017). Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proceedings of the National Academy of Sciences, 114(2), 394-399.

Murray, J. D., Jaramillo, J., & Wang, X. J. (2017). Working memory and decision making in a fronto-parietal circuit model. Journal of Neuroscience, 0343-17.

 

November 1st: 

Jacob, S. N., Hähnke, D., & Nieder, A. (2018). Structuring of Abstract Working Memory Content by Fronto-parietal Synchrony in Primate Cortex. Neuron, 99(3), 588-597.

November 8th: 

Pinotsis, D. A., Buschman, T. J., & Miller, E. K. (2017). Working Memory Load Modulates Neuronal Coupling. bioRxiv, 192336.

 

November 15th: 

Gunseli, E., Fahrenfort, J. J., van Moorselaar, D., Daoultzis, K. C. C., Meeter, M., & Olivers, C. N. (2018). Unattended but actively stored: EEG dynamics reveal a dissociation between selective attention and storage in working memory. bioRxiv, 320952.

 

November 22nd: No Meeting (Thanksgiving)

 

November 29th: 

Yatziv, T., & Kessler, Y. (2018). A two-level hierarchical framework of visual short-term memory. Journal of Vision, 18(9), 2-2.

December 6th: 

Bae, G. Y., & Luck, S. J. (2018). What happens to an individual visual working memory representation when it is interrupted?. British Journal of Psychology.

Feldmann-Wüstefeld, T., Vogel, E. K., & Awh, E. (2018). Contralateral Delay Activity Indexes Working Memory Storage, Not the Current Focus of Spatial Attention. Journal of cognitive neuroscience, 1-11.